Excess Viscosity η^{E} , Excess Volume V^{E} , and Excess Free Energy of Activation $\Delta G^{*\text{E}}$ at 283, 293, 303, 313, and 323 K for Mixtures of Acetonitrile and Alkyl Benzoates

Begoña García* and Juan C. Ortega

Universidad de Valladolid, Departamento de Química Fisica, Colegio Universitario Integrado, Burgos, Spain

Kinematic viscosities were measured for the mixtures (I) acetonitrile + methyl benzoate, (II) acetonitrile + ethyl benzoate, (III) acetonitrile + n-propyl benzoate, and (IV) acetonitrile + n-butyl benzoate at different temperatures over the entire composition range. From the experimental data, the negative excess viscosities, negative excess free energies of activation, and positive excess molar volumes obtained suggest very interesting intermolecular interactions. The behavior of the mixtures is discussed.

Introduction

Excess thermodynamic functions have been used as a qualitative and quantitative guide to predict the extent of complex formation in binary liquid mixtures of nonelectrolytes (1-4). The binary liquid mixtures (I) acetonitrile + methyl benzoate, (II) acetonitrile + *n*-propyl benzoate, and (IV) acetonitrile + *n*-butyl benzoate were chosen

Table I.	Compariso	1 of the	Measured	Properties	of Pure
Compone	ents with th	e Litera	ture Valu	es	

	n	neasured	literature			
	temp, °C	ρ , g cm ⁻³	η, cP	ρ , g cm ⁻³	η, cP	
acetonitrile	10	0.7921	0.452			
	15				0.375	
	20	0.7816	0.408	0.7822, ^b 0.7857 ^a		
	25			0.7766 ^b		
	30	0.7715	0.371	0.77125^{b}	0.325^{b}	
	40	0.7601	0.339			
	50	0.7495	0.309			
methyl	10	1.0994	2.435			
benzoate	15			1.09334^{b}	2.298^{b}	
	20	1.0892	1.879	1.0888ª		
	30	1.0800	1.522	1.07091 ^b	1.673	
	40	1.0680	1.237			
	50	1.0591	1.016			
ethvl	10	1.0574	2.597			
benzoate	15			1.05112^{b}	2.407^{b}	
	20	1.0483	2.013	1.0468ª		
	30	1.0384	1.597	1.03718 ^b	1.751	
	40	1.0278	1.284			
	50	1.0200	1.058			
propyl	10	1.0346	3.451			
benzoate	15			1.0274^{b}		
	20	1.0262	2.586	1.0232, ^b 1.0230 ^a		
	30	1.0187	2.013			
	40	1.0069	1.604			
	41.5			1.0046^{b}		
	50	0.9988	1.301			
butyl	10	1.0147	3.802			
benzoate	20	1.0054	2.835	1.000ª		
	30	0.9972	2.189			
	40	0.9884	1.729			
	50	0.9813	1.387			

^a Reference 5. ^b Reference 6.

Table II.	Kinematic	Viscosities	Measured a	t Different
Tomporat	ures for Mi	itturee T II	III and IV	,

uperatures for minimutes i, il, ill, and i v										
<i>x</i> ₁	283 K	293 K	303 K	313 K	323 K					
Mixture I										
0.000	0.570	0.522	0.481	0.446	0.412					
0.134	0.596	0.546	0.499	0.462	0.422					
0.255	0.611	0.558	0.510	0.466	0.428					
0.373	0.651	0.586	0.531	0.479	0.435					
0.480	0.762	0.685	0.612	0.561	0.507					
0.570	0.794	0.708	0.629	0.558	0.505					
0.666	0.942	0.820	0.716	0.633	0.559					
0.752	1.105	0.946	0.810	0.705	0.612					
0.837	1.303	1.084	0.921	0.794	0.683					
0.922	1.736	1.418	1.163	0.973	0.825					
1.000	2.215	1.725	1.410	1.159	0.959					
		Mixt	ure II							
0.129	0.628	0.575	0.522	0.480	0.437					
0.250	0.648	0.593	0.538	0.495	0.450					
0.362	0.718	0.638	0.576	0.523	0.473					
0.469	0.786	0.701	0.623	0.563	0.505					
0.571	0.892	0.778	0.684	0.613	0.547					
0.657	1.039	0.892	0.772	0.684	0.602					
0.756	1.296	1.088	0.932	0.803	0.699					
0.832	1.608	1.351	1.121	0.949	0.815					
0.914	2.120	1.709	1.386	1.146	0.967					
1.000	2.456	1.921	1.538	1.250	1.037					
		Mixt	ure III							
0.127	0.597	0.544	0.498	0.460	0.421					
0.247	0.634	0.579	0.524	0.476	0.434					
0.362	0.718	0.640	0.576	0.519	0.471					
0.467	0.790	0.698	0.622	0.559	0.500					
0.567	0.968	0.835	0.729	0.644	0.570					
0.658	1.111	0.946	0.815	0.717	0.626					
0.748	1.384	1.159	0.977	0.837	0.720					
0.842	1.823	1.561	1.280	1.073	0.901					
0.928	2.672	2.058	1.632	1.338	1.111					
1.000	3.335	2.520	1.976	1.593	1.303					
		Mixt	ure IV							
0.125	0.603	0.555	0.506	0.465	0.406					
0.244	0.653	0.589	0.533	0.487	0.443					
0.355	0.700	0.628	0.563	0.512	0.467					
0.463	0.828	0.723	0.641	0.569	0.512					
0.563	0.991	0.853	0.742	0.650	0.533					
0.654	1.222	1.036	0.855	0.770	0.673					
0.750	1.514	1.249	1.053	0.897	0.732					
0.830	2.008	1.629	1.330	1.117	0.960					
0.919	2.792	2.164	1.729	1.414	1.166					
1.000	3.747	2.820	2.195	1.750	1.414					

due to the polar nature of these five species (acetonitrile, $\mu = 3.4$ D, and esters, $\mu \simeq 1.9$ D).

In the present work densities (ρ) and viscosities (η) of the four mixtures were measured over the entire mole fraction range at 283, 293, 303, 313, and 323 K; these permitted the obtention of the corresponding kinematic viscosities ($\nu = \eta / \rho$). From the experimental results the following thermodynamic functions were calculated: $V^{\rm E}$ (excess molar volume), $\eta^{\rm E}$ (excess viscosity), and $\Delta G^{*\rm E}$ (excess molar free energy of activation of flow).

Figure 1. Excess viscosity (cP) variation with ester concentration at 293 K for mixtures I (Δ), II (\otimes), III (\oplus), and IV (O).

Experimental Section

Densities were measured with a double levelling pycnometer; it was calibrated at the five working temperatures with quantities weighed within ± 0.0001 g. Viscosities were measured with an Ostwald viscometer calibrated with distilled water at different temperatures, with the density and viscosity values taken from the literature (5); timings were made within ± 0.01 s; two readings were taken at each mole fraction and the mean viscosity did not exceed ± 0.004 cP. It was possible to maintain the temperature constant to within ± 0.05 K with a P-Selecta thermostat, with the viscometer kept in vertical position throughout.

Reactants. Acetonitrile Panreac p.a. Grade with a stated purity of 99.5 mol % minimum, methyl benzoate (purum >98% GC), and ethyl benzoate (purum >99% GC) were obtained from Fluka. These were purified by suitable procedures involving distillation and drying (6); *n*-propyl and *n*-butyl benzoates were synthesized by a Fisher esterification (7); water was continuously eliminated by means of a Dean-Stark trap and the reflux time was reduced from 10 h to 5; the ester obtained was washed with water and extracted with ether; anhydrous Na₂SO₄ was used for drying and NaHCO₃ to eliminate the excess benzoic acid; the purification was carried out in a vacuum line within

Figure 2. Excess volume (cm³ mol⁻¹) variation with ester concentration at 293 K for mixtures I (Δ), II (\otimes), III (\oplus), and IV (O).

a range of 122-124 °C for *n*-propyl benzoate and 156-158 °C for *n*-butyl benzoate.

Characterization of the esters was carried out with a NMR-H1 spectrometer R-24B, 60 MHz Hitachi-Perkin Elmer; purity was assessed with a Perkin Elmer 990 gas chromatograph; with a Hewlett Packard 3390A integrator for a column in liquid phase over a solid Supelcoport 100/120, $1^{1}/_{8}$ in., the working temperatures being 250, 275, and 150 °C for the detector, injector, and oven, respectively; the carrier gas was nitrogen at 20 cm³ min⁻¹ and the combustion gases were air and hydrogen at 240 and 30 cm³ min⁻¹, respectively. The purity obtained was 99.95% GC for the two esters. Mixtures were prepared by mixing weighed amounts of the pure liquids and care was taken to prevent evaporation. Properties of the pure components appear in Table I.

Results

The excess thermodynamic functions (β) were calculated with the following equations

$$\eta^{\mathsf{E}} = \eta - (X_1 \eta_1 + X_2 \eta_2) \tag{1}$$

$$V^{\mathsf{E}} = V - (X_1 V_1 + X_2 V_2) \tag{2}$$

$$\Delta G^{*E} = RT(\ln \eta V - (X_1 \ln \eta_1 V_1 + X_2 \ln \eta_2 V_2)) \quad (3)$$

where η , η_1 , and η_2 are the viscosities of the mixture and of the pure components and V, V₁, and V₂ are the molar volumes

Table III. Excess Viscosities (cP), Excess Volumes (cm³ mol⁻¹), and Excess Free Energy (kJ mol⁻¹) for Mixtures I-IV

												<u> </u>					
			283 I	K		293 I	K		303 K			313 K			323 K	[
mixture	x_1	$-\eta^{\mathbf{E}}$	$V^{\mathbf{E}}$	$-\Delta G^{*E}$	$-\eta^{\rm E}$	$V^{\mathbf{E}}$	$-\Delta G^{*E}$	$-\eta^{\mathbf{E}}$	$V^{\mathbb{E}}$	$-\Delta G^{*E}$	$-\eta^{\mathrm{E}}$	$V^{\rm E}$	$-\Delta G^{*E}$	$-\eta^{\mathbf{E}}$	$V^{\mathbf{E}}$	$-\Delta G^{*E}$	
I	0.134	0.22	3.84	2.62	0.16	3.95	0.65	0.12	4.06	-0.15	0.09	4.07	-0.82	0.07	4.25	-0.48	
	0.255	0.43	5.49	11.48	0.30	5.50	7.56	0.23	5.70	5.99	0.18	5.85	5.45	0.13	6.03	2.28	
	0.373	0.61	7.53	18.96	0.44	7.57	15.54	0.34	7.91	13.28	0.26	8.03	13.61	0.20	8.27	13.99	
	0.480	0.73	8.02	23.13	0.52	8.13	18.29	0.40	8.28	16.44	0.30	8.37	13.80	0.22	8.62	10.63	
	0.570	0.81	7.53	25.90	0.57	7.64	21.07	0.43	7.63	19.07	0.32	7.79	17.14	0.24	7.92	14.17	
	0.666	0.83	5.57	27.56	0.58	5.61	21.98	0.44	5.82	19.38	0.33	5.76	18.64	0.24	5.92	15.10	
	0.752	0.81	4.08	24.41	0.55	4.08	19.92	0.42	4.09	18.70	0.31	4.02	17.10	0.23	4.25	14.34	
	0.837	0.74	2.70	22.80	0.51	2.78	19.66	0.38	2.71	18.35	0.28	2.60	16.37	0.20	2.74	14.36	
	0.922	0.41	1.73	9.71	0.25	1.69	6.60	0.20	1.74	7.38	0.15	1.59	6.95	0.10	1.69	5.33	
II	0.129	0.21	3.80	-3.43	0.15	3.90	-5.53	0.11	4.03	-6.05	0.08	4.11	-7.13	0.06	4.15	-7.39	
	0.250	0.43	6.27	4.95	0.31	6.44	1.30	0.23	6.73	-0.63	0.17	6.85	-3.80	0.13	7.11	-4.60	
	0.362	0.59	7.09	9.08	0.43	7.32	6.71	0.32	7.49	3.74	0.23	7.62	1.10	0.18	7.78	0.99	
	0.469	0.74	7.96	15.75	0.53	8.11	11.54	0.39	8.35	8.84	0.29	8.57	5.38	0.22	8.71	3.21	
	0.571	0.84	7.99	19.57	0.61	8.27	16.28	0.45	8.46	13.36	0.32	8.87	9.46	0.25	8.97	6.85	
	0.657	0.87	7.26	19.75	0.62	7.24	16.29	0.45	7.46	13.85	0.33	7.72	9.79	0.25	8.00	7.70	
	0.756	0.80	5.20	15.69	0.56	5.35	13.05	0.40	5.36	10.01	0.29	5.53	7.46	0.21	5.96	5.34	
	0.832	0.59	3.15	8.75	0.38	3.26	4.55	0.27	3.25	3.44	0.18	3.15	1.57	0.13	3.35	-0.14	
	0.914	0.20	0.88	-2.46	0.11	0.98	-4.28	0.07	0.87	-4.45	0.04	0.76	-5.28	0.02	0.87	-6.24	
III	0.127	0.34	3.88	31.25	0.24	3.96	1.35	0.18	4.05	-0.05	0.13	4.13	-1.51	0.10	4.38	-2.33	
	0.247	0.66	6.85	11.49	0.46	7.06	7.45	0.34	7.28	5.36	0.26	7.25	4.11	0.20	7.69	2.29	
	0.362	0.91	8.83	17.05	0.65	9.16	13.43	0.48	9.47	10.32	0.36	9.58	8.25	0.28	10.05	5.61	
	0.467	1.15	9.23	26.28	0.81	9.38	21.77	0.59	9.88	18.22	0.45	10.06	15.16	0.34	10.30	12.73	
	0.567	1.26	8.59	25.74	0.88	9.04	21.70	0.64	9.16	18.48	0.48	9.40	15.94	0.37	9.59	13.41	
	0.658	1.38	7.86	30.79	0.96	8.23	26.48	0.70	8.62	23.43	0.52	8.55	19.94	0.39	8.69	18.06	
	0.748	1.35	6.46	28.57	0.92	7.05	23.40	0.67	7.16	21.64	0.49	7.15	19.71	0.38	7.28	17.91	
	0.842	1.18	5.01	22.53	0.72	5.43	13.82	0.51	5.69	12.27	0.37	5.57	10.93	0.29	5.74	10.43	
	0.928	0.54	3.49	4.87	0.38	3.80	-4.53	0.28	4.12	4.72	0.20	3.84	4.16	0.15	3.93	3.57	
IV	0.125	0.38	4.33	1.26	0.26	4.38	-1.55	0.19	4.45	-2.74	0.14	4.55	-3.77	0.10	4.78	0.03	
	0.244	0.72	7.15	8.33	0.51	7.34	5.37	0.38	7.59	3.11	0.28	7.57	1.22	0.22	8.13	1.01	
	0.355	1.04	8.62	19.71	0.73	8.82	15.47	0.54	9.13	12.69	0.40	9.42	9.40	0.31	9.80	5.80	
	0.463	1.27	9.40	23.64	0.90	9.65	20.10	0.66	10.27	16.67	0.50	10.30	14.47	0.38	10.71	11.02	
	0.563	1.44	9.41	26.76	1.01	9.64	22.90	0.73	9.94	19.82	0.55	10.29	18.71	0.41	10.60	17.44	
	0.654	1.52	8.57	27.42	1.05	8.75	24.09	0.75	9.03	21.03	0.55	9.25	19.28	0.45	9.47	21.89	
	0.750	1.50	6.75	26.26	1.03	6.91	22.09	0.75	7.13	19.28	0.55	7.39	16.07	0.37	7.62	13.03	
	0.830	1.27	4.60	18.88	0.85	4.68	15.34	0.61	4.83	13.90	0.43	4.99	11.59	0.30	5.16	7.59	
	0.919	0.75	2.51	8.48	0.50	2.51	7.40	0.35	2.59	6.38	0.24	2.71	5.14	0.18	2.82	4.25	

Figure 3. Excess free energy of activation (kJ mol⁻¹) variation with ester concentration at 293 K for mixtures I (Δ), II (\otimes), III (\oplus), and IV (O).

х

of the mixture and of the pure components. The molar volume V of the mixture is defined as

$$V = (X_1 M_1 + X_2 M_2) / \rho$$
 (4)

where M_1 and M_2 are the molecular weights of the components, ρ is the density of the mixture, and X_i is the mole fraction of the component *i* in solution.

Table II contains the kinematic viscosities measured at five different temperatures for mixtures I–IV. The excess thermodynamic function values are shown in Table III for each of the four mixtures studied; these values were fitted at each temperature to a polynomial function by the method of unweighted least squares:

$$Y^{\rm E} = X_1 X_2 \sum_{i=0}^{n-1} a_i (X_1 - X_2)^i$$
 (5)

The *n* coefficients a_i , multilinear correlation coefficients *R*, and standard deviations S(Y), calculated according to eq 6, are shown in Tables IV, V, and VI.

$$S(Y) = \left[\frac{\sum (Y^{E}_{expti} - Y^{E}_{calcd})^{2}}{n_{expti} - n} \right]^{1/2}$$
(6)

In nonelectrolyte systems, positive deviations from ideal behavior are attributed to dispersion forces (9) and negative deviations to geometric considerations (10). Attempts have been made to explain the direction and magnitude of the excess viscosity and excess volume behavior of the liquid mixtures.

Table III shows that excess viscosities are negative in the entire range of temperatures and mole fraction, with a minimum

Table IV. Least-Squares Coefficients of Results by Eq 5 for Excess Viscosities

n	nixture	<i>T</i> , K	<i>a</i> ₀	<i>a</i> ₁	a_2	<i>a</i> ₃	a4	<i>a</i> ₅	R	S(Y)
	I	283	-3.00	-1.34	-1.38	-5.15	-0.10	5.70	0.998	0.154
		293	-2.13	-0.61	-0.88	-5.45	0.12	6.75	0.996	0.154
		303	-1.63	-0.49	-0.50	-3.62	-0.28	4.24	0.998	0.114
		313	-1.24	-0.34	-0.37	-2.46	-0.04	2.75	0.998	0.098
		323	-0.94	-0.21	-0.23	-2.06	-0.12	2.36	0.999	0.071
	II	283	-3.08	-1.90	-2.32	-2.46	5.11	6.75	0.998	0.129
		293	-2.22	-1.48	-1.52	-0.43	4.11	3.58	0.999	0.089
		303	-1.64	-1.08	-0.99	-0.03	2.94	2.33	0.999	0.066
		313	-1.21	-0.75	-0.67	-0.06	2.24	1.90	0.999	0.066
		323	-0.95	-0.55	0.09	-0.80	0.79	2.93	0.999	0.063
	III	283	-4.70	-2.33	-3.72	-9.88	2.60	12.97	0.998	0.208
		293	-3.35	-2.30	-1.73	-0.50	1.36	1.05	0.999	0.109
		303	-2.48	-1.87	-0.91	1.78	0.26	-2.65	0.998	0.133
		313	-1.85	-1.21	-0.87	0.22	0.79	0.20	0.999	0.095
		323	-1.42	-0.87	-0.71	-0.07	0.65	0.18	0.999	0.079
	IV	283	-5.36	-3.32	-2.81	-4.10	1.18	4.76	0.999	0.147
		293	-3.79	-2.35	-1.61	-1.51	0.71	1.54	0.999	0.159
		303	-2.77	-1.59	-1.09	-1.41	0.58	1.62	0.999	0.126
		313	-2.07	-1.10	-0.75	-1.15	0.51	1.45	0.998	0.125
		323	-1.62	-0.90	-0.22	0.70	-0.34	-1.08	0.997	0.108

Table V. Least-Squares Coefficients of Results by Eq 5 for Excess Volumes

mixture	<i>T</i> , K	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	a_3	a4	a_5	a_6	R	S(Y)
I	283	32.43	-9.34	-45.08	12.88	64.87	-21.00		0.998	0.547
	293	32.86	-10.22	-47.83	21.54	70.40	-35.88		0.998	0.478
	303	33.35	-12.59	-38.60	31.00	23.13	-48.89	54.07	0.998	0.229
	313	34.04	-11.82	-48.02	16.05	66.19	-25.76		0.998	0.514
	323	34.65	-14.23	-39.88	34.03	27.07	-52.51	48.59	0.999	0.399
II	283	33.03	6.45	-12.50	-60.73	49.91	54.57	-85.39	0.999	0.373
	293	32.21	7.37	-9.75	-62.23	37.77	53.79	-73.91	0.999	0.282
	303	33.99	7.49	-16.68	-74.57	73.23	72.57	-117.98	0.999	0.139
	313	35.10	10.09	-16.59	86.93	64.29	82.49	-109.88	0.999	0.464
	323	35.59	10.89	-12.86	-94.84	64.45	96.32	-120.08	0.999	0.149
III	283	36.33	-8.52	5.97	26.36	-56.69	-7.30	91.70	0.999	0.409
	293	37.31	-7.58	16.31	30.74	-89.23	-12.34	122.98	0.999	0.227
	303	38.76	-8.74	14.23	34.22	-88.58	-11.06	130.25	0.999	0.685
	313	39.64	-9.56	5.04	40.15	-63.76	-23.87	107.87	0.999	0.255
	323	40.59	-12.42	8.78	46.37	-68.87	-27.76	109.64	0.999	0.284
IV	283	37.83	3.14	5.01	-32.01	-42.11	31.11	47.63	0.998	0.300
	293	38.80	4.32	1.39	-40.41	-24.32	41.98	25.24	0.995	0.508
	303	39.99	3.15	5.37	-35.46	-42.16	37.83	41.66	0.997	0.389
	313	41.44	1.81	3.55	-17.83	-54.95	13.04	68.25	0.993	0.558
	323	40.84	1.42	3.39	-29.85	-36.44	32.85	41.61	0.998	0.401

Table VI. Least-Squares Coefficients of Results by Eq 5 for Excess Molar Free Energy of Activation

mixture	<i>T</i> , K	a_0	<i>a</i> ₁	a2	a_3	a4	a_5	a_6	a_7	R	S(Y)
I	283	-95.10	-140.31	95.56	700.65	858.88	-3039.57	-815.25	3320.59	0.999	4.644
	293	-74.85	-87.82	-142.51	702.70	1016.13	-3612.72	-1429.50	4210.48	0.999	2.636
	303	-67.07	-73.72	-84.47	450.95	595.38	-2454.00	-841.28	663.79	0.999	2.121
	313	-59.04	-67.32	-218.82	584.96	1347.92	-3226.53	-1772.43	3808.99	0.997	8.104
	323	-15.48	5.82	-34.89	-3.35	80.79	-120.62	-193.09	118.36	0.999	0.142
II	283	-69.70	-96.57	126.31	155.90	-523.04	37.91	947.49	-255.85	0.999	0.037
	293	-51.92	-88.78	-17.47	101.40	285.98				0.999	1.795
	303	-40.67	-86.52	-2.84	100.92	240.83				0.999	2.673
	313	-26.90	-72.30	18.74	14.06	189.79	112.76			0.999	1.569
	323	-17.07	-72.22	7.36	50.54	202.84	69.58			0.999	1.092
III	283	-99.24	~52.34	-91.38	-3 30.00	202.25	523.10			0.992	5.719
	293	-92.34	-106.31	33.81	91.75	63.14				0.998	3.598
	303	-78.24	-121.59	14.27	200.12	88.07	-154.89			0.997	5.640
	313	65.39	-90.79	7.41	49.58	86.48				0.993	7.021
	323	-54.39	-94.81	-7.66	55.52	100.88				0.995	5.904
IV	283	-98.55	-53.35	-186.25	-294.46	1026.07	463.32	-1051.66		0.999	0.517
	293	-81.80	-36.94	-128.11	-313.88	821.95	427.52	-847.30		0.998	0.987
	303	-72.09	-74.14	8.46	-13.93	102.51				0.992	4.749
	313	65.06	-93.40	-89.42	-14.69	699.57	100.54	-695.79		0.999	0.591
	323	-54.48	-72.47	-72.47	149.28	163.13				0.998	4.155

well-defined; according to Fort and Moore (11), excess viscosities are negative in systems of unequal molecular size in which dispersion forces are dominant. Figure 1 shows the variation of excess viscosities with ester mole fraction at 20 °C;

the behavior observed is similar at all temperatures studied: excess viscosities become more negative with increasing length of the lateral chain of the ester and lead to a minimum near X_1 $\simeq 0.66$; this minimum points to the existence of intermolecular interactions with complex formation (12). The four curves are not regularly spaced and a marked gap is observed in excess viscosities from mixture II to III.

In the systems studied, excess volumes are positive throughout the whole range of mole fractions and lead to maxima showing little variation with temperature. Figure 2 shows the results obtained for the four mixtures at 20 °C; with increasing chain length the maximum increases and is located near $X_1 \simeq 0.5$; positive V^E values have been explained in terms of complex formation (13). However, Palmer and Smith (14), based on their investigation on 1-propanol + dichloromethane mixtures at 25 °C, attributed positive V^E to a breaking of hydrogen bridges, caused by dichloromethane. The formation of high-volume complexes would justify the high values obtained for excess volumes.

According to Reed (15) and Meyer (16), excess free energy of activation may be considered a reliable measure to detect the presence of interactions between molecules; positive values of ΔG^{*E} can be seen in binary mixtures where specific interactions between molecules take place; negative ΔG^{*E} indicate a characteristic behavior of mixtures in which dispersion forces are dominant (17). In this investigation high negative values of ΔG^{*E} were obtained for mixtures I-IV; in some cases positive ΔG^{*E} values appeared in the proximity of pure components. These results are shown in Figure 3, with a minimum located at $X_1 \simeq 0.66$.

Glossary

dipole moment, D μ viscosity, cP η kinematic viscosity, m² s⁻¹ ν density, g cm⁻³ ρ η^{E} excess viscosity, cP VE excess volume, cm³ mol⁻¹ ΔG^{*E} excess free energy, kJ mol-1 \boldsymbol{X}_1 ester mole fraction

- X Y^Ē acetonitrile mole fraction thermodynamic excess property a_i polynomial coefficients n _{expti} number of data points n number of adjustable parameters
- Τ temperature, K
- molar volume, cm3 mol-1 V
- R gas constant
- М molecular weight

Registry No. Acetonitrile, 75-05-8; methyl benzoate, 93-58-3; ethyl benzoate, 93-89-0; propyl benzoate, 2315-68-6; butyl benzoate, 138-60-7.

Literature Cited

- (1) Battino, R. Chem. Rev. 1971, 71, 5.
- (2) Rowlinson, J. S. Liquids and Liquid Mixtures; Butterworths: London, 1969.
- (3) Prigogine, I. The Molecular Theory of Solutions; North Holland: Am-
- (a) the stordam, 1957.
 (4) Marsh, K. N. Annu. Rep. C. Chem. Soc. London 1980, 101.
 (5) Handbook of Chemistry and Physics, 64th ed.; CRC Press: Boca Raton, FL, 1983.
- (6) Riddik, A.; Bunger, W. B. Organic Solvents; Wiley Interscience: New York, 1970; Vol. II.

- (i) Yoger, A. I. A Jextbook of Practical Physical Organic Chemistry, 3rd ed.; Longman: London, 1972.
 (8) Katti, P. K.; Chaudhri, M. M. J. Chem. Eng. Data 1984, 9, 442.
 (9) Hirschfelder, J. O.; Curtis, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954.
 (10) Guggenheim, E. A. Mixtures; Oxford University Press: Oxford, U.K., 1952.
- (11) Fort, R. J.; Moore, W. R. Trans. Faraday Soc. 1968, 62, 1112.
- (12) Fieldkov, Y. J. Chem. Phys. 1961, 37, 1051.
 (13) Pedrosa, G. C.; Salas, J. A.; Davolid, F.; Katz, M. An. Asoc. Quim. Argen . 1984, 72, 541. Palmer, D. A.; Smith, B. J. Chem. Eng. Data 1972, 17, 71. Reed, T. M.; Taylor, T. E. J. Phys. Chem. 1959, 63, 58. Meyer, R.; Meyer, M.; Metzer, J.; Peneloux, A. J. Chem. Phys. 1971,
- (14)
- (16) 62.405.
- (17) Oswal, S.; Rathnam, M. U. Can. J. Chem. 1984, 62, 2851.

Received for review January 8, 1967. Revised September 21, 1987. Accepted December 29, 1987.

Partial Molar Volumes and Compressibilities of 1-1 Type Chlorides, Bromides, $[Ph_{4}P]CI$, and $Na[Ph_{4}B]$ in Water-Acetone Mixtures

Fumio Kawaizumi,* Fujimasa Nakao, and Hiroyasu Nomura

Department of Chemical Engineering, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

The densities and adiabatic compressibilities have been measured at 298,15 K for solutions of NaCl. KCl. CsCl. NaBr, KBr, [Ph₄P]Cl, and Na[Ph₄B] dissolved in water-acetone mixtures up to acetone content 50 wt %. The partial molar volume V_2^0 and partial molar adiabatic compressibilities K,⁰ have been calculated. Variation with composition of the solvent system was more remarkable for K_1^0 than for V_2^0 . In solvents containing more than 10 wt % of acetone, K, o of [Ph,P]Cl and Na[Ph,B] were positive, while all the other 1-1 type salts always had negative K_{a}^{0} values. Ionic division of K_{a}^{0} of an electrolyte based on the assumption $K_{4}^{0}([Ph_{4}P]^{+}) =$ K. ([Ph4B]) seems unacceptable in this mixed solvent.

Introduction

It is well-known that the partial molar volume and partial molar adiabatic compressibility are very helpful parameters for elucidation of various aspects of solute-solvent interactions. Information deduced from the respective parameters is complementary to each other. Behavior of electrolytes in mixed solvents, especially in those containing water as one of the components, is currently arousing considerable interest because of its importance as fundamental data in solution chemistry and potentiality in industrial purposes. However, in addition to the paucity of physical constants of binary mixed solvents in general, the thermodynamic behavior of an electrolyte dissolved in such mixed solvents often shows highly complex solvent composition dependence. Therefore, for discussion of the solute-